3.680 \(\int \frac {\sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx\)

Optimal. Leaf size=136 \[ -\frac {2 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {c} \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}} \]

[Out]

-2*EllipticE(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)))^(1/2))*(-a)^(1/2)
*(e*x+d)^(1/2)*(c*x^2/a+1)^(1/2)/c^(1/2)/(c*x^2+a)^(1/2)/((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {719, 424} \[ -\frac {2 \sqrt {-a} \sqrt {\frac {c x^2}{a}+1} \sqrt {d+e x} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {c} \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {-a} e+\sqrt {c} d}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d + e*x]/Sqrt[a + c*x^2],x]

[Out]

(-2*Sqrt[-a]*Sqrt[d + e*x]*Sqrt[1 + (c*x^2)/a]*EllipticE[ArcSin[Sqrt[1 - (Sqrt[c]*x)/Sqrt[-a]]/Sqrt[2]], (-2*a
*e)/(Sqrt[-a]*Sqrt[c]*d - a*e)])/(Sqrt[c]*Sqrt[(Sqrt[c]*(d + e*x))/(Sqrt[c]*d + Sqrt[-a]*e)]*Sqrt[a + c*x^2])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 719

Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*a*Rt[-(c/a), 2]*(d + e*x)^m*Sqrt[
1 + (c*x^2)/a])/(c*Sqrt[a + c*x^2]*((c*(d + e*x))/(c*d - a*e*Rt[-(c/a), 2]))^m), Subst[Int[(1 + (2*a*e*Rt[-(c/
a), 2]*x^2)/(c*d - a*e*Rt[-(c/a), 2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(1 - Rt[-(c/a), 2]*x)/2]], x] /; FreeQ[{a,
 c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m^2, 1/4]

Rubi steps

\begin {align*} \int \frac {\sqrt {d+e x}}{\sqrt {a+c x^2}} \, dx &=\frac {\left (2 a \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {2 a \sqrt {c} e x^2}{\sqrt {-a} \left (c d-\frac {a \sqrt {c} e}{\sqrt {-a}}\right )}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )}{\sqrt {-a} \sqrt {c} \sqrt {\frac {c (d+e x)}{c d-\frac {a \sqrt {c} e}{\sqrt {-a}}}} \sqrt {a+c x^2}}\\ &=-\frac {2 \sqrt {-a} \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\sin ^{-1}\left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {c} \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.49, size = 294, normalized size = 2.16 \[ \frac {2 i \sqrt {d+e x} \left (\sqrt {c} d+i \sqrt {a} e\right ) \sqrt {\frac {e \left (\sqrt {a}+i \sqrt {c} x\right )}{\sqrt {a} e-i \sqrt {c} d}} \left (E\left (i \sinh ^{-1}\left (\sqrt {-\frac {\sqrt {c} (d+e x)}{\sqrt {c} d-i \sqrt {a} e}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )-F\left (i \sinh ^{-1}\left (\sqrt {-\frac {\sqrt {c} (d+e x)}{\sqrt {c} d-i \sqrt {a} e}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )\right )}{\sqrt {c} e \sqrt {a+c x^2} \sqrt {\frac {\sqrt {c} (d+e x)}{e \left (\sqrt {c} x+i \sqrt {a}\right )}}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d + e*x]/Sqrt[a + c*x^2],x]

[Out]

((2*I)*(Sqrt[c]*d + I*Sqrt[a]*e)*Sqrt[(e*(Sqrt[a] + I*Sqrt[c]*x))/((-I)*Sqrt[c]*d + Sqrt[a]*e)]*Sqrt[d + e*x]*
(EllipticE[I*ArcSinh[Sqrt[-((Sqrt[c]*(d + e*x))/(Sqrt[c]*d - I*Sqrt[a]*e))]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[
c]*d + I*Sqrt[a]*e)] - EllipticF[I*ArcSinh[Sqrt[-((Sqrt[c]*(d + e*x))/(Sqrt[c]*d - I*Sqrt[a]*e))]], (Sqrt[c]*d
 - I*Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)]))/(Sqrt[c]*e*Sqrt[(Sqrt[c]*(d + e*x))/(e*(I*Sqrt[a] + Sqrt[c]*x))]*
Sqrt[a + c*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.90, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {e x + d}}{\sqrt {c x^{2} + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*x + d)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x + d}}{\sqrt {c x^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*x + d)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

maple [B]  time = 0.10, size = 396, normalized size = 2.91 \[ \frac {2 \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}\, \left (c d -\sqrt {-a c}\, e \right ) \sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{c d +\sqrt {-a c}\, e}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{-c d +\sqrt {-a c}\, e}}\, \left (-c d \EllipticE \left (\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}, \sqrt {-\frac {-c d +\sqrt {-a c}\, e}{c d +\sqrt {-a c}\, e}}\right )+c d \EllipticF \left (\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}, \sqrt {-\frac {-c d +\sqrt {-a c}\, e}{c d +\sqrt {-a c}\, e}}\right )-\sqrt {-a c}\, e \EllipticE \left (\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}, \sqrt {-\frac {-c d +\sqrt {-a c}\, e}{c d +\sqrt {-a c}\, e}}\right )+\sqrt {-a c}\, e \EllipticF \left (\sqrt {-\frac {\left (e x +d \right ) c}{-c d +\sqrt {-a c}\, e}}, \sqrt {-\frac {-c d +\sqrt {-a c}\, e}{c d +\sqrt {-a c}\, e}}\right )\right )}{\left (c e \,x^{3}+c d \,x^{2}+a e x +a d \right ) c^{2} e} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(1/2)/(c*x^2+a)^(1/2),x)

[Out]

2*(e*x+d)^(1/2)*(c*x^2+a)^(1/2)*(-(-a*c)^(1/2)*e+c*d)*(-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2)*((-c*x+(-a*c)^(
1/2))/(c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((c*x+(-a*c)^(1/2))/(-c*d+(-a*c)^(1/2)*e)*e)^(1/2)*((-a*c)^(1/2)*EllipticF
((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*e-(-a*c)^(1/2)*
EllipticE((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*e+d*El
lipticF((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*c-Ellipt
icE((-(e*x+d)/(-c*d+(-a*c)^(1/2)*e)*c)^(1/2),(-(-c*d+(-a*c)^(1/2)*e)/(c*d+(-a*c)^(1/2)*e))^(1/2))*c*d)/e/(c*e*
x^3+c*d*x^2+a*e*x+a*d)/c^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x + d}}{\sqrt {c x^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(1/2)/(c*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)/sqrt(c*x^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {d+e\,x}}{\sqrt {c\,x^2+a}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d + e*x)^(1/2)/(a + c*x^2)^(1/2),x)

[Out]

int((d + e*x)^(1/2)/(a + c*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d + e x}}{\sqrt {a + c x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(1/2)/(c*x**2+a)**(1/2),x)

[Out]

Integral(sqrt(d + e*x)/sqrt(a + c*x**2), x)

________________________________________________________________________________________